An autonomous metabolic role for Spen

نویسندگان

  • Kelsey E Hazegh
  • Travis Nemkov
  • Angelo D'Alessandro
  • John D Diller
  • Jenifer Monks
  • James L McManaman
  • Kenneth L Jones
  • Kirk C Hansen
  • Tânia Reis
چکیده

Preventing obesity requires a precise balance between deposition into and mobilization from fat stores, but regulatory mechanisms are incompletely understood. Drosophila Split ends (Spen) is the founding member of a conserved family of RNA-binding proteins involved in transcriptional regulation and frequently mutated in human cancers. We find that manipulating Spen expression alters larval fat levels in a cell-autonomous manner. Spen-depleted larvae had defects in energy liberation from stores, including starvation sensitivity and major changes in the levels of metabolic enzymes and metabolites, particularly those involved in β-oxidation. Spenito, a small Spen family member, counteracted Spen function in fat regulation. Finally, mouse Spen and Spenito transcript levels scaled directly with body fat in vivo, suggesting a conserved role in fat liberation and catabolism. This study demonstrates that Spen is a key regulator of energy balance and provides a molecular context to understand the metabolic defects that arise from Spen dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: An autonomous metabolic role for Spen

[This corrects the article DOI: 10.1371/journal.pgen.1006859.].

متن کامل

In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding.

Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized (13)C MRI, including CSI with a ce...

متن کامل

Split ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development

The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we...

متن کامل

Expression analysis of the Arabidopsis thaliana AtSpen2 gene, and its relationship with other plant genes encoding Spen proteins

Proteins of the Split ends (Spen) family are characterized by an N-terminal domain, with one or more RNA recognition motifs and a SPOC domain. In Arabidopsis thaliana, the Spen protein FPA is involved in the control of flowering time as a component of an autonomous pathway independent of photoperiod. The A. thaliana genome encodes another gene for a putative Spen protein at the locus At4g12640,...

متن کامل

Functional MRI using super-resolved spatiotemporal encoding.

Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017